Optimal allocation model for maritime emergency resource considering the spatial correlation between accident hotspots

Volume 9, Issue 1, February 2025     |     PP. 11-49      |     PDF (2591 K)    |     Pub. Date: March 12, 2025
DOI: 10.54647/isss120376    13 Downloads     63 Views  

Author(s)

Shenping Hu, College of Merchant Marine, Shanghai Maritime University; Shanghai 201306, China; National Engineering Research Centre for Ship Transportation Control System, Shanghai 200135, China
Weihua Liu, College of Marine Science and Engineering, Shanghai Maritime University; Shanghai 201306, China
Chaoxia Yuan, College of Science, Shanghai Maritime University; Shanghai 201306, China
Qinghua Zhu, College of Merchant Marine,Shanghai Maritime University; Shanghai 201306, China
Yang Zhang, Transportation College, Shanghai Maritime University; Shanghai 201306, China
Bing Han, National Engineering Research Centre for Ship Transportation Control System, Shanghai 200135, China; Shanghai Ship and Shipping Research Institute, Shanghai 200135, China

Abstract
For effective maritime traffic emergency rescue (MTER) operations in the event of maritime traffic accidents (MTAs) and to improve rescue efficiency, it is necessary to analyse the MTER synergy problem and the cooperation between port states. First, the spatial information of accidents under the geographic information system(GIS) data structure is clarified from the global integrated shipping information system (GISIS) of the International Maritime Organization (IMO), and the density-based spatial clustering of applications with noise (DBSCAN) algorithm is used to conduct hotspot mapping analysis of MTAs to establish the clustering and classification of accident characteristics in key areas. Second, the classification characteristics of accident samples are extracted based on spatial information, and the correlation attributes between MTA hotspots are analysed. Furthermore by introducing complex network measurement technology, the topological model of the MTER network is established considering the correlation of accident hotspots, and combined this model with the sample data of MTAs in Southeast Asian waters from 1990 to 2022. Third, the MTER topological network model is quantitatively analysed under the accident space of Southeast Asia, and the degree of correlation of traffic accidents in key areas is obtained to reveal the inevitable demand for MTER between regions. The results of the analysis show that there is a network correlation between inter-regional accident hotspots, and thus the degree of correlation between accident hotspots needs to be considered for MTER in key areas. Countries in densely connected regions would set up joint rescue exercises and to be considered rescue assistance between port countries stakeholder, thus improving protection for accident emergency responses. The method of complex network topology based on spatial correlation between accident hotspots suggests a new attempt towards solving the MTER problem.

Keywords
Maritime traffic accidents, Maritime traffic emergency rescue, Emergency resource, Spatial correlation, Complex network

Cite this paper
Shenping Hu, Weihua Liu, Chaoxia Yuan, Qinghua Zhu, Yang Zhang, Bing Han, Optimal allocation model for maritime emergency resource considering the spatial correlation between accident hotspots , SCIREA Journal of Information Science and Systems Science. Volume 9, Issue 1, February 2025 | PP. 11-49. 10.54647/isss120376

References

[ 1 ] Acharya, T. D., Yoo, K. W., & Lee, D. H. (2017). GIS-based Spatio-temporal Analysis of Marine Accidents Database in the Coastal Zone of Korea. Journal of Coastal Research, 114-118. doi:10.2112/si79-024.1
[ 2 ] Ai, Y. F., Lu, J., Zhang, L. L. (2015). The optimization model for the location of maritime emergency supplies reserve bases and the configuration of salvage vessels. Transportation Research Part E-Logistics and Transportation Review, 83, 170-188. doi:10.1016/j.tre.2015.09.006
[ 3 ] Al-mamory, S. O., Kamil, I. S. (2019). A NEW DENSITY BASED SAMPLING TO ENHANCE DBSCAN CLUSTERING ALGORITHM. Malaysian Journal of Computer Science, 32(4), 315-327. doi:10.22452/mjcs.vol32no4.5
[ 4 ] Boonchoo, T., Ao, X., Liu, Y., et al. (2019). Grid-based DBSCAN: Indexing and inference. Pattern Recognition, 90, 271-284. doi:10.1016/j.patcog.2019.01.034
[ 5 ] Bye, R. J., Aalberg, A. L. (2018). Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports. Reliability Engineering & System Safety, 176, 174-186. doi:10.1016/j.ress.2018.03.033
[ 6 ] Cakir, E., Fiskin, R., Sevgili, C. (2021). Investigation of tugboat accidents severity: An application of association rule mining algorithms. Reliability Engineering & System Safety, 209. doi:10.1016/j.ress.2021.107470
[ 7 ] Chakraborty, N., Hartung, G., Katragadda, M., et al (2011). Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data. Combustion and Flame, 158(7), 1372-1390. doi:10.1016/j.combustflame.2010.11.014
[ 8 ] Chen, J. Y., Lin, X., Zheng, H. B., et al. (2017). A novel cluster center fast determination clustering algorithm. Applied Soft Computing, 57, 539-555. doi:10.1016/j.asoc.2017.04.031
[ 9 ] Deng, J., Liu, S. Y., Shu, et al. (2023). Risk evolution and prevention and control strategies of maritime accidents in China?s coastal areas based on complex network models. Ocean & Coastal Management, 237. doi:10.1016/j.ocecoaman.2023.106527
[ 10 ] Ding, R., Ujang, N., Bin Hamid, et al. (2019). Application of Complex Networks Theory in Urban Traffic Network Researches. Networks & Spatial Economics, 19(4), 1281-1317. doi:10.1007/s11067-019-09466-5
[ 11 ] Dominguez-Péry, C., Tassabehji, R., Corset, F. et al(2023). A holistic view of maritime navigation accidents and risk indicators:examining IMO reports from 2011 to 2021.Journal of Shipping and Trade. 8, 11 . doi:10.1186/s41072-023-00135-y
[ 12 ] Dong, W. L., Jin, J., Lu, M., et al. (2021). Analysis of Emergency Medical Rescue in the "8-12" Tianjin Port Heavy Fire Explosion Accident. Prehospital and Disaster Medicine, 36(2), 237-242. doi:10.1017/s1049023x20001478
[ 13 ] Ganesh, A., Maggs, B. M., Panigrahi, D. (2023). Universal Algorithms for Clustering Problems. ACM Transactions on Algorithms, 19(2). doi:10.1145/3572840
[ 14 ] Guo, D. G. (2022). Correlation Analysis Of Coal Mine Safety Accidents Based On Apriori Algorithm. Fresenius Environmental Bulletin, 31(9), 9355-9361. Retrieved from ://WOS:000862761500006
[ 15 ] Guo, Y., Ye, Y. , Yang, Q., et al (2019). A Multi-Objective INLP Model of Sustainable Resource Allocation for Long-Range Maritime Search and Rescue. Sustainability, 11(3). doi:10.3390/su11030929
[ 16 ] Hossain, M. M., & Alam, S. (2017). A complex network approach towards modeling and analysis of the Australian Airport Network. Journal of Air Transport Management, 60, 1-9. doi:10.1016/j.jairtraman.2016.12.008
[ 17 ] HU,S., Fang, Q., Xia, H., et al. (2007). Formal safety assessment based on relative risks model in ship navigation. Reliab. Eng. Syst. Saf. 92 (3), 369–377. https://doi.org/ 10.1016/j.ress.2006.04.011.
[ 18 ] HU,S., Li, Z., Xi, Y., , et al. (2019.) Path analysis of causal factors influencing marine traffic accident via structural equation numerical modeling. J. Mar. Sci. Eng. 7.
[ 19 ] HU, S., Li, W., Xi, Y., , et al. (2022). Evolution pathway of process risk of marine traffic with the STAMP model and a genetic algorithm: a simulation of LNG-fueled vessel in-and-out harbor. Ocean. Eng. 253.
[ 20 ] Huang, J., Han, N., Jiang, B. Q., et al. (2022). Water search and rescue (SAR) for ship accidents in China: analysis of 12 years' data. Annals of Translational Medicine. doi:10.21037/atm-22-4530
[ 21 ] Hussain, O. A., Ahmad, M. B., Zaidi, F. (2022). Benchmarking the influential nodes in complex networks. Advances in Complex Systems. doi:10.1142/s0219525922500102
[ 22 ] Kim, M., Lee, J., Lee, C., et al. (2022). Framework of 2D KDE and LSTM-Based Forecasting for Cost-Effective Inventory Management in Smart Manufacturing. Applied Sciences-Basel, 12(5). doi:10.3390/app12052380
[ 23 ] Li, B. , Lu, J., Lu, H., et al. (2023). Predicting maritime accident consequence scenarios for emergency response decisions using optimization-based decision tree approach. Maritime Policy & Management, 50(1), 19-41. doi:10.1080/03088839.2021.1959074
[ 24 ] Li, H., & Yang, Z. (2023). Towards safe navigation environment: The imminent role of spatio-temporal pattern mining in maritime piracy incidents analysis. Reliability Engineering & System Safety, 238, 109422. doi:https://doi.org/10.1016/j.ress.2023.109422
[ 25 ] Liu, W., HU, G., Li, J., (2012). emergency resources demand prediction using case-based reasoning.Safety Science, 50(3), 530-5349. https://doi.org/10.1016/j.ssci.2011.11.007
[ 26 ] Lu, J. H., Wen, G. H., Lu, R. Q., et al. (2022). Networked Knowledge and Complex Networks: An Engineering View. IEEE-CAA Journal of Automatica Sinica, 9(8), 1366-1383. doi:10.1109/jas.2022.105737
[ 27 ] Luchi, D., Rodrigues, A. L., Varejao, F. M. (2019). Sampling approaches for applying DBSCAN to large datasets. Pattern Recognition Letters, 117, 90-96. doi:10.1016/j.patrec.2018.12.010
[ 28 ] Luo, M. F., Shin, S. H. (2019). Half-century research developments in maritime accidents: Future directions. Accident Analysis and Prevention, 123, 448-460. doi:10.1016/j.aap.2016.04.010
[ 29 ] Ma, Q. , Zhang, D. , Wan, C., et al. (2022). Multi-objective emergency resources allocation optimization for maritime search and rescue considering accident black-spots. Ocean Engineering, 261. doi:10.1016/j.oceaneng.2022.112178
[ 30 ] Ma, Q. D., Zhou, Y., Liu, L. (2022). Review and comparison of the demand analysis methods of maritime emergency resources. Brodogradnja, 73(1), 141-162. doi:10.21278/brod73108.
[ 31 ] Ma, X. , Lan, H., Qiao, W. , et al (2022). On the causation correlation of maritime accidents based on data mining techniques. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability. doi:10.1177/1748006x221131717
[ 32 ] Mou, N. , Sun, S. , Yang, T, et al. (2020). Assessment of the resilience of a complex network for crude oil transportation on the maritime silk road. IEEE Access, 8, 181311-181325. doi:10.1109/access.2020.3028214
[ 33 ] Ozaydin, E., Fiskin, R., Ugurlu, O., et al (2022). A hybrid model for marine accident analysis based on Bayesian Network (BN) and Association Rule Mining (ARM). Ocean Engineering, 247. doi:10.1016/j.oceaneng.2022.110705
[ 34 ] Panda, S., & Nanda, P. K. (2021). Kernel density estimation and correntropy based background modeling and camera model parameter estimation for underwater video object detection. Soft Computing, 25(15), 10477-10496. doi:10.1007/s00500-021-05919-7
[ 35 ] Peng, Z. X., Wang, C., Xu, W. Q., et al. (2022). Research on Location-Routing Problem of Maritime Emergency Materials Distribution Based on Bi-Level Programming. Mathematics, 10(8). doi:10.3390/math10081243
[ 36 ] Qiao, W. L., Ma, X. X., Liu, Y., et al. (2022). Resilience evaluation of maritime liquid cargo emergency response by integrating FRAM and a BN: A case study of a propylene leakage emergency scenario. Ocean Engineering, 247. doi:10.1016/j.oceaneng.2022.110584
[ 37 ] Seo, S. H., Choi, J. I., & Song, J. (2017). Secure Utilization of Beacons and UAVs in emergency response systems for building fire hazard. Sensors, 17(10). doi:10.3390/s17102200
[ 38 ] Shahparvari, S., Bodaghi, B. (2018). Risk reduction for distribution of the perishable rescue items; A possibilistic programming approach. International Journal of Disaster Risk Reduction, 31, 886-901. doi:10.1016/j.ijdrr.2018.07.018
[ 39 ] Sun, Y., Ling, J., Chen, X. Q., et al. (2022). Exploring Maritime Search and Rescue Resource Allocation via an Enhanced Particle Swarm Optimization Method. Journal of Marine Science and Engineering, 10(7). doi:10.3390/jmse10070906
[ 40 ] Sun, B. Z., Ma, W. M., Zhao, H. Y. (2013). A fuzzy rough set approach to emergency material demand prediction over two universes. Applied Mathematical Modelling, 37(10-11), 7062-7070. doi:10.1016/j.apm.2013.02.008
[ 41 ] Ugurlu, O., Erol, S., Basar, E. (2016). The analysis of life safety and economic loss in marine accidents occurring in the Turkish Straits. Maritime Policy & Management, 43(3), 356-370. doi:10.1080/03088839.2014.1000992
[ 42 ] Wang, H. X., Liu, Z. J., Liu, Z. C., et al. (2022). GIS-based analysis on the spatial patterns of global maritime accidents. Ocean Engineering, 245. doi:10.1016/j.oceaneng.2022.110569
[ 43 ] Wang, Y. Y. (2021). Multiperiod optimal allocation of emergency resources in support of cross-regional disaster sustainable rescue. International Journal of Disaster Risk Science, 12(3), 394-409. doi:10.1007/s13753-021-00347-5
[ 44 ] Wang, W., Huang, L., Zhang, X. S. (2018). Optimization of maritime emergency materials allocation based on network reliability. Journal of Coastal Research, 691-696. doi:10.2112/si83-115.1
[ 45 ] Wen, H. Y., Wu, J. B., Duan, Y. C., et al. (2019). A methodology of timing co-evolutionary path optimization for accident emergency rescue considering future environmental uncertainty. IEEE Access, 7, 131459-131472. doi:10.1109/access.2019.2940315
[ 46 ] Weng, J. X., Li, G. R. (2019). Exploring shipping accident contributory factors using association rules. Journal of Transportation Safety & Security, 11(1), 36-57. doi:10.1080/19439962.2017.1341440
[ 47 ] Xiong, W. T., van Gelder, P., Yang, K. W. (2020). A decision support method for design and operationalization of search and rescue in maritime emergency. Ocean Engineering, 207. doi:10.1016/j.oceaneng.2020.107399
[ 48 ] Yang, Y.., Liu, W., Xu, X. (2022). Identifying important ports in maritime silk road shipping network from local and global perspective. Transportation Research Record, 2676(12), 798-810. doi:10.1177/03611981221097704
[ 49 ] Yang, Y., Shao, Z. P., Hu, Y., et al. (2022). Geographical spatial analysis and risk prediction based on machine learning for maritime traffic accidents: A case study of Fujian sea area. Ocean Engineering, 266. doi:10.1016/j.oceaneng.2022.113106
[ 50 ] Yu, E. Y., Wang, Y. P., Fu, Y., et al. (2020). Identifying critical nodes in complex networks via graph convolutional networks. Knowledge-Based Systems, 198. doi:10.1016/j.knosys.2020.105893
[ 51 ] Zhang, L. Y., Lu, J., Yang, Z. L. (2021). Dynamic optimization of emergency resource scheduling in a large-scale maritime oil spill accident. Computers & Industrial Engineering, 152. doi:10.1016/j.cie.2020.107028
[ 52 ] Zhang, M. Y., Huang, T., Guo, Z. X., et al. (2022). Complex-network-based traffic network analysis and dynamics: A comprehensive review. Physica a-Statistical Mechanics and Its Applications, 607. doi:10.1016/j.physa.2022.128063
[ 53 ] Zhang, Y., Sun, X., Chen, J., Cheng, C. (2021). Spatial patterns and characteristics of global maritime accidents. Reliability Engineering & System Safety, 206,107310.doi:https://doi.org/10.1016/j.ress.2020.107310
[ 54 ] Zhou, J., Yu, X. H., Lu, J. A. (2019). Node Importance in Controlled Complex Networks. IEEE Transactions on Circuits and Systems Ii-Express Briefs, 66(3), 437-441. doi:10.1109/tcsii.2018.2845940
[ 55 ] Zhou, X. (2022). A comprehensive framework for assessing navigation risk and deploying maritime emergency resources in the South China Sea. Ocean Engineering, 248. doi:10.1016/j.oceaneng.2022.110797
[ 56 ] Zou, Y., Donner, R. V., Marwan, N., et al. (2019). Complex network approaches to nonlinear time series analysis. Physics Reports-Review Section of Physics Letters, 787, 1-97. doi:10.1016/j.physrep.2018.10.005