Hydrology, carbon and contours - The Future of Farming
DOI: 10.54647/agriculture210360 94 Downloads 151781 Views
Author(s)
Abstract
Since settlement Australian agriculture has transitioned from hydrated carbon rich landscapes abundant in trees and diverse pastoral systems to a continent dominated by low carbon soils, overgrazed grasslands and vast fields of annual monoculture crops. Inappropriate farming practices including deforestation have led to longer intervals between sporadic and extreme rain events, highly incised streams and declining aquifer recharging. Landscape drainage has had a sizeable hydrological impact resulting in significant drops in annual rainfall and increased desertification. All this culminated in the uncontrolled wildfires that took place in 2019 and 2020 and extreme floods in 2021 and 2022.
Research indicates that these water-retention measures and practices can lower the regional temperature by 1.6°C and have the potential to increase production by 15-45% adding significantly to national food security. Further, they provide tangible ways to reduce the intensity of Australia’s, Europe’s, Asia’s and North America’s droughts, fires and floods.
Keywords
Desertification, contour farming, food security, migration
Cite this paper
Adam Willson, Gwyn Jones, Greg Paynter, Garry Edser, Duane Norris, Michal Kravcik,
Hydrology, carbon and contours - The Future of Farming
, SCIREA Journal of Agriculture.
Volume 8, Issue 2, April 2023 | PP. 106-136.
10.54647/agriculture210360
References
[ 1 ] | Allen, M. F. (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal, 6(2), 291-297. https://doi.org/(https://doi.org/10.2136/vzj2006.0068). |
[ 2 ] | Altieri, M. A., & Nicholls, C. I. (2020). Agroecology and the reconstruction of a post-COVID-19 agriculture. The Journal of Peasant Studies, 47(5), 881-898. https://doi.org/(https://doi.org/10.1080/03066150.2020.1782891). |
[ 3 ] | Andrade, D., Pasini, F., & Scarano, F. R. (2020). Syntropy and innovation in agriculture. Current Opinion in Environmental Sustainability, 45, 20-24. https://doi.org/https://doi.org/10.1016/j.cosust.2020.08.003 |
[ 4 ] | Andrews, P. (2006). Back from the brink: how Australia's landscape can be saved. HarperCollins Australia. |
[ 5 ] | Andrews, P. (2008). Beyond the Brink: A Radical Vision for Australia’s Landscape, ABC Books, Sydney. |
[ 6 ] | Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology letters, 32(11), 1559-1570. https://doi.org/(https://doi.org/10.1007/s10529-010-0347-0) |
[ 7 ] | Bagavathiannan, M. V., & Davis, A. S. (2018). An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest management science, 74(10), 2277-2286. https://doi.org/https://doi.org/10.1002/ps.4920 |
[ 8 ] | Baker, T., Moroni, M., Mendham, D., Smith, R., & Hunt, M. (2018). Impacts of windbreak shelter on crop and livestock production. Crop and Pasture Science, 69(8), 785-796. https://doi.org/(https://doi.org/10.1071/CP17242). |
[ 9 ] | Balfour, E. B. (1943). The living soil. The living soil. (https://soilandhealth.org/copyrighted-book/the-living-soil/) |
[ 10 ] | Barker, E. (2021). Outback graziers left scratching their heads as rain fails to boost grass growth. (https://www.abc.net.au/news/rural/2021-03-08/rain-falls-but-fails-to-grow-grass-north-west-queensland/13216010) |
[ 11 ] | Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological economics, 64(2), 269-285. https://doi.org/https://doi.org/10.1016/j.ecolecon.2007.03.004 |
[ 12 ] | Bergstrom, D. M., Wienecke, B. C., van den Hoff, J., Hughes, L., Lindenmayer, D. B., Ainsworth, T. D., Baker, C. M., Bland, L., Bowman, D. M., & Brooks, S. T. (2021). Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 27(9), 1692-1703. https://doi.org/ (https://doi.org/10.1111/gcb.15539) |
[ 13 ] | Beus, C. E., & Dunlap, R. E. (1990). Conventional versus alternative agriculture: The paradigmatic roots of the debate. Rural sociology, 55(4), 590-616. https://doi.org/https://doi.org/10.1111/j.1549-0831.1990.tb00699.xCitations: 194 |
[ 14 ] | Booth, B. D., Murphy, S. D., & Swanton, C. J. (2003). Weed ecology in natural and agricultural systems. CABI. http://sherekashmir.informaticspublishing.com/437/1/9780851995281.pdf |
[ 15 ] | Booth, B. D., & Swanton, C. J. (2002). Assembly theory applied to weed communities. Weed Science, 50(1), 2-13. https://doi.org/https://doi.org/10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2 |
[ 16 ] | Bowles, T. M., Mooshammer, M., Socolar, Y., Calderón, F., Cavigelli, M. A., Culman, S. W., Deen, W., Drury, C. F., y Garcia, A. G., & Gaudin, A. C. (2020). Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth, 2(3), 284-293. https://doi.org/(https://doi.org/10.1016/j.oneear.2020.02.007). |
[ 17 ] | Bradshaw, C. J. A. (2012). Little left to lose: deforestation and forest degradation in Australia since European colonization. J Plant Ecol, 5(1), 109-120. https://doi.org/(https://doi.org/10.1093/jpe/rtr038) |
[ 18 ] | Broadhurst, L., & Coates, D. (2017). Plant conservation in Australia: current directions and future challenges. Plant diversity, 39(6), 348-356. https://doi.org/(https://doi.org/10.1016/j.pld.2017.09.005) |
[ 19 ] | Brown, G. (2017). Dirt to Soil: One Family’s Journey Into Regenerative Agriculture. |
[ 20 ] | Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., & Esper, J. (2021). Recent European drought extremes beyond Common Era background variability. Nature Geoscience, 14(4), 190-196. https://doi.org/https://doi.org/10.1038/s41561-021-00698-0 |
[ 21 ] | Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., Morsy, M., Eisen, J. A., Leach, J. E., & Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS biology, 15(3), e2001793. https://doi.org/https://doi.org/10.1371/journal.pbio.2001793 |
[ 22 ] | Cevasco, R. (2013). Piedmont. In Italian Historical Rural Landscapes (pp. 175-198). Springer. https://doi.org/(https://doi.org/10.1007/978-94-007-5354-9_7) |
[ 23 ] | Chaganti, V. N., Crohn, D. M., & Šimůnek, J. (2015). Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agricultural water management, 158, 255-265. https://doi.org/https://doi.org/10.1016/j.agwat.2015.05.016 |
[ 24 ] | Chico, C. S. U. (2022). Gabe Brown, Brown’s Ranch, Bismarck, ND. https://www.csuchico.edu/regenerativeagriculture/demos/gabe-brown.shtml |
[ 25 ] | Chou, C.-H. (1999). Roles of allelopathy in plant biodiversity and sustainable agriculture. Critical reviews in plant sciences, 18(5), 609-636. https://doi.org/(https://doi.org/10.1080/07352689991309414) |
[ 26 ] | Clark, A. (2008). Managing cover crops profitably. Diane Publishing. |
[ 27 ] | Cocannouer, J. A. (1950). Weeds, guardians of the soil. http://www.zetatalk11.com/docs/Plants/Weeds/Weeds_Guardians_Of_The_Soil_1980.pdf |
[ 28 ] | Cole, C., & Zurbo, B. (2008). Industrial hemp–a new crop for NSW. D. o. P. Industries, Ed, 801. |
[ 29 ] | Collins, P. (2017). The Wondrous World of Weeds. (New Holland Publishers) |
[ 30 ] | Cong, W. F., van Ruijven, J., Mommer, L., De Deyn, G. B., Berendse, F., & Hoffland, E. (2014). Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of ecology, 102(5), 1163-1170. https://doi.org/ https://doi.org/10.1111/1365-2745.12280 |
[ 31 ] | Cook, D. E. (2021). Anthropogenic environmental change on the frontiers of European colonisation in Australia, AD 1788–1840. A reply to comments in Woodward (2020). Geomorphology, 373, 107234. https://doi.org/(https://doi.org/10.1016/j.geomorph.2020.107234) |
[ 32 ] | Costa-Cabral, M., & Marcelini, S. S. . (2015). The role of forests in the maintenance of stream flow regimes and ground water reserves: A review of scientific literature, Northwest Hydraulic Consultants (https://www.inputbrasil.org/wp-content/uploads/2015/05/The_role_of_forests_in_the_maintenance_of_stream_flow_regimes_and_ground_water_reserves_summary_Agroicone.pdf) |
[ 33 ] | Cowie, A. L., Orr, B. J., Sanchez, V. M. C., Chasek, P., Crossman, N. D., Erlewein, A., Louwagie, G., Maron, M., Metternicht, G. I., & Minelli, S. (2018). Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environmental science & policy, 79, 25-35. https://doi.org/https://doi.org/10.1016/j.envsci.2017.10.011 |
[ 34 ] | Cross, R., & Ampt, P. (2017). Exploring agroecological sustainability: Unearthing innovators and documenting a community of practice in Southeast Australia. Society & Natural Resources, 30(5), 585-600. https://doi.org/https://doi.org/10.1080/08941920.2016.1230915 |
[ 35 ] | Crystal-Ornelas, R., Thapa, R., & Tully, K. L. (2021). Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agriculture, Ecosystems & Environment, 312, 107356. https://doi.org/https://doi.org/10.1016/j.agee.2021.107356 |
[ 36 ] | Damant, G. (2018). Can agroforestry improve soil water and temperature dynamics in agriculture? A case study with syntropic farming in Bahia, Brazil. European Agroforestry Conference-Agroforestry as Sustainable Land Use, 4th, |
[ 37 ] | Das, S. (2015). Dr. Rajendra Singh: His tryst with water and peace. Journal of the Geological Society of India, 85(5), 521. https://link.springer.com/content/pdf/10.1007/s12594-015-0245-0.pdf |
[ 38 ] | Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M., & Liebman, M. (2012). Increasing cropping system diversity balances productivity, profitability and environmental health. https://doi.org/(https://doi.org/10.1371/journal.pone.0047149). |
[ 39 ] | De Strzelecki, P. E. (1845). Physical Description of New South Wales and Van Diemen's Land: Accompanied by a Geological Map, Sections and Diagrams, and Figures of the Organic Remains. London: Longman, Brown, Green, and Longmans. |
[ 40 ] | Delius, P., Maggs, T., & Schoeman, M. (2012). Bokoni: Old structures, new paradigms? Rethinking pre-colonial society from the perspective of the stone-walled sites in Mpumalanga. Journal of Southern African Studies, 38(2), 399-414. https://doi.org/(https://doi.org/10.1080/03057070.2012.682841) |
[ 41 ] | Deng, Z., Hung, H.-c., Carson, M. T., Oktaviana, A. A., Hakim, B., & Simanjuntak, T. (2020). Validating earliest rice farming in the Indonesian Archipelago. Scientific reports, 10(1), 10984. https://doi.org/10.1038/s41598-020-67747-3 |
[ 42 ] | Diacono, M., & Montemurro, F. (2011). Long-term effects of organic amendments on soil fertility. In Sustainable agriculture volume 2 (pp. 761-786). Springer. https://doi.org/(https://doi.org/10.1007/978-94-007-0394-0_34) |
[ 43 ] | Doherty, D. J. J., A. . (2015 ). Regrarian's eHandbook. Regrarians Ltd. (http://www.regrarians.org/regrarians-handbook/) |
[ 44 ] | Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J. M., Murdiyarso, D., Gutierrez, V., Noordwijk, M. v., Creed, I. F., Pokorný, J., Gaveau, D. L. A., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., . . . Sullivan, C. A. (2017). Trees, forests and water : Cool insights for a hot world. Global Environmental Change-human and Policy Dimensions, 43, 51-61. https://doi.org/(https://doi.org/10.1016/j.gloenvcha.2017.01.002) |
[ 45 ] | Environment, N. G. D. o. P. a. (2023). Determining stream order. https://water.nsw.gov.au/__data/assets/pdf_file/0020/511553/determining-strahler-stream-order-fact-sheet.pdf |
[ 46 ] | Eswaran, H., & Reich, P. (2003). Global desertification vulnerability map. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA. http://www. nrcs. usda. gov/wps/portal/nrcs/detail/soils/use. (https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/worldsoils/?cid=nrcs142p2_054003) |
[ 47 ] | Eyles, R. (1977). Changes in drainage networks since 1820, Southern Tablelands, NSW. Australian Geographer, 13(6), 377-386. https://doi.org/(https://doi.org/10.1080/00049187708702716) |
[ 48 ] | Farber, S., & Turner, R. (2014). Changes in the global value of ecosystem services. Global Environmental. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2014.04.002 |
[ 49 ] | Ferguson, R. S., & Lovell, S. T. (2014). Permaculture for agroecology: design, movement, practice, and worldview. A review. Agronomy for sustainable development, 34(2), 251-274. https://doi.org/(https://doi.org/10.1007/s13593-013-0181-6) |
[ 50 ] | Fiebrig, I., Zikeli, S., Bach, S., & Gruber, S. (2020). Perspectives on permaculture for commercial farming: aspirations and realities. Organic Agriculture, 10(3), 379-394. https://doi.org/(https://doi.org/10.1007/s13165-020-00281-8). |
[ 51 ] | Finney, D. M., White, C. M., & Kaye, J. P. (2016). Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal, 108(1), 39-52. https://doi.org/https://doi.org/10.2134/agronj15.0182 |
[ 52 ] | Fischer, J., Zerger, A., Gibbons, P., Stott, J., & Law, B. S. (2010). Tree decline and the future of Australian farmland biodiversity. Proceedings of the National Academy of Sciences, 107(45), 19597-19602. https://doi.org/https://doi.org/10.1073/pnas.1008476107 |
[ 53 ] | Freund, M., Henley, B. J., Karoly, D. J., Allen, K. J., & Baker, P. J. (2017). Multi-century cool-and warm-season rainfall reconstructions for Australia's major climatic regions. Climate of the Past, 13(12), 1751-1770. https://doi.org/(https://doi.org/10.5194/cp-13-1751-2017) |
[ 54 ] | Gaba, S., Reboud, X., & Fried, G. (2016). Agroecology and conservation of weed diversity in agricultural lands. In (Vol. 163, pp. 351-354): Taylor & Francis. |
[ 55 ] | Geno, L. M., & Geno, B. J. (2001). Polyculture production: principles, benefits and risks of multiple cropping land management systems for Australia: a report for the rural industries research and development corporation. Rural Industries Research and Development Corporation. |
[ 56 ] | Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative agriculture: An agronomic perspective. Outlook on Agriculture, 50(1), 13-25. https://doi.org/https://doi.org/10.1177/0030727021998063 |
[ 57 ] | Gosnell, H., Gill, N., & Voyer, M. (2019). Transformational adaptation on the farm: Processes of change and persistence in transitions to ‘climate-smart’regenerative agriculture. Global Environmental Change, 59, 101965. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2019.101965 |
[ 58 ] | Götsch, E. (1995). Break-through in agriculture. AS-PTA Rio de Janeiro. http://nossacasa.net/nossosriachos/agroecologia/wp-content/uploads/sites/9/2020/10/1995a_Ernest_Gotsch.pdf |
[ 59 ] | Grace, P., Post, W., Godwin, D., Bryceson, K., Truscott, M., & Hennessy, K. J. (2019). Soil carbon dynamics in relation to soil surface management and cropping systems in Australian agroecosystems. Management of carbon sequestration in soil, 175-193. |
[ 60 ] | Harlan, J. R., & deWet, J. M. (1965). Some thoughts about weeds. Economic botany, 19(1), 16-24. (http://www.jstor.org/stable/4252561) |
[ 61 ] | Hathaway, M. D. (2016). Agroecology and permaculture: addressing key ecological problems by rethinking and redesigning agricultural systems. Journal of Environmental Studies and Sciences, 6(2), 239-250. https://doi.org/(https://doi.org/10.1007/s13412-015-0254-8) |
[ 62 ] | Hesslerová, P., Pokorný, J., Huryna, H., & Harper, D. (2019). Wetlands and forests regulate climate via evapotranspiration. In Wetlands: Ecosystem Services, Restoration and Wise Use (pp. 63-93). Springer. https://doi.org/(https://doi.org/10.1007/978-3-030-14861-4_4) |
[ 63 ] | Hill, S. B., & Ramsay, J. (1977). Weeds as indicators of soil conditions. The McDonald Journal, 38(6), 8-12. (https://www.researchgate.net/profile/Jennifer-Ramsay/publication/265487256_Weeds_as_Indicators_Of_Soil_Conditions/links/551aec2f0cf2bb7540786db9/Weeds-as-Indicators-Of-Soil-Conditions.pdf) |
[ 64 ] | Howard, S. A. (1943). An Agricultural Testament. In: JSTOR. |
[ 65 ] | Hurditch, W. (2015). Sustainable water and energy management in Australia’s farming landscapes. WIT Transactions on Ecology and the Environment, 200, 329-341. https://doi.org/(https://doi.org/10.2495/WS150281) |
[ 66 ] | Ikerd, J. (2021). THE ECONOMIC PAMPHLETEER: Realities of regenerative agriculture. Journal of Agriculture, Food Systems, and Community Development, 10(2), 7–10-17–10. https://doi.org/DOI: https://doi.org/10.5304/jafscd.2021.102.001 |
[ 67 ] | Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48(1), 419-445. https://doi.org/https://doi.org/10.1146/annurev-ecolsys-112414-054234 |
[ 68 ] | Jehne, W. (2019). Regenerate Earth. Visited on: http://www. globalcoolingearth. org. (http://nzbiocharltd.co.nz/resources/Regenerate-Earth-Paper-Walter-Jehne%20%281%29.pdf) |
[ 69 ] | Johnson, D., Ellington, J., & Eaton, W. (2015). Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix (2167-9843). (https://peerj.com/preprints/789v1.pdf) |
[ 70 ] | Johnson, D. C., Teague, R., Apfelbaum, S., Thompson, R., & Byck, P. (2022). Adaptive multi-paddock grazing management’s influence on soil food web community structure for: increasing pasture forage production, soil organic carbon, and reducing soil respiration rates in southeastern USA ranches. PeerJ, 10, e13750. https://doi.org/(https://doi.org/10.7717/peerj.13750) |
[ 71 ] | Jones, C. (2010). Soil carbon-can it save agriculture’s bacon? The Permaculture Research Institute. (http://amazingcarbon.com/PDF/JONES-SoilCarbon&AgricultureREVISED(18May10).pdf) |
[ 72 ] | Jones, C. (2018). Light farming: restoring carbon, organic nitrogen and biodiversity to agricultural soils. Agriculture, s Innovative Minds Symposium,. Wichita, Kansas, USA, |
[ 73 ] | Junk, W. J., An, S., Finlayson, C., Gopal, B., Květ, J., Mitchell, S. A., Mitsch, W. J., & Robarts, R. D. (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic sciences, 75(1), 151-167. (https://pure.mpg.de/rest/items/item_1737912/component/file_1737913/content) |
[ 74 ] | Kell, W. V. (1938). Strip cropping. (https://naldc.nal.usda.gov/download/IND43893616/PDF) |
[ 75 ] | Kikuchi, Y., Sasaki, Y., Yoshino, H., Okahashi, J., Yoshida, M., & Inaba, N. (2014). Local visions of the landscape: participatory photographic survey of the world heritage site, the rice terraces of the Philippine Cordilleras. Landscape Research, 39(4), 387-401. https://doi.org/(https://doi.org/10.1080/01426397.2012.761189) |
[ 76 ] | King, F. C. (1951). The weed problem-a new approach. The weed problem-a new approach. |
[ 77 ] | Kravčík, M., Gabriš, P., & Kravčíková, D. (2020). Projects Implemented and Lessons Learnt from the New Water Paradigm. In W. Leal Filho, J. Luetz, & D. Ayal (Eds.), Handbook of Climate Change Management: Research, Leadership, Transformation (pp. 1-46). Springer International Publishing. https://doi.org/10.1007/978-3-030-22759-3_132-1 |
[ 78 ] | Kravčík, M., Pokorný, J., Kohutiar, J., Kovác, M., & Tóth, E. (2007). The New Water Paradigm-Water for the Recovery of the Climate. Krupa Print, Žilina. http://www.waterparadigm.org |
[ 79 ] | Krebs, J., & Bach, S. (2018). Permaculture—Scientific evidence of principles for the agroecological design of farming systems. Sustainability, 10(9), 3218. https://doi.org/ https://doi.org/10.3390/su10093218 |
[ 80 ] | Lal, R. (2020a). Managing soils for resolving the conflict between agriculture and nature: The hard talk. European Journal of Soil Science, 71(1), 1-9. https://doi.org/https://doi-org.ezproxy.scu.edu.au/10.1111/ejss.12857 |
[ 81 ] | Lal, R. (2020b). Regenerative agriculture for food and climate. Journal of Soil and Water Conservation, 75(5), 123A-124A. https://doi.org/https://doi.org/10.2489/jswc.2020.0620A |
[ 82 ] | Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., & Scheu, S. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), 6707. https://doi.org/https://doi.org/10.1038/ncomms7707 |
[ 83 ] | Lhotsky, J. (1835). A Journey from Sydney to the Australian Alps, undertaken in the months of January, February, and March, 1834. Being an account of the geographical & natural relation of the country traversed, its aborigines, etc.[With a map and with MS. material inserted.]. Sydney;[by commission at R. Ackerman's depository: London]. (https://nla.gov.au/nla.obj-495608964/view?partId=nla.obj-509632507#page/n8/mode/1up) |
[ 84 ] | Lichtenberg, E. (2019). Conservation and the environment in US farm legislation. EuroChoices, 18(1), 49-55. https://doi.org/(https://doi.org/10.1111/1746-692X.12214) |
[ 85 ] | Lowdermilk, W. C. (1948). Conquest of the land through seven thousand years. US Department of Agriculture, Soil Conservation Service. |
[ 86 ] | MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H., & Dehnen-Schmutz, K. (2020). An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for sustainable development, 40(4), 1-29. https://doi.org/(https://doi.org/10.1007/s13593-020-00631-6) |
[ 87 ] | Mahaut, L., Cheptou, P.-O., Fried, G., Munoz, F., Storkey, J., Vasseur, F., Violle, C., & Bretagnolle, F. (2020). Weeds: against the rules? Trends in plant science, 25(11), 1107-1116. https://doi.org/(https://doi.org/10.1016/j.tplants.2020.05.013) |
[ 88 ] | Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and earth system sciences, 11(2), 1013-1033. https://doi.org/(https://doi.org/10.5194/hess-11-1013-2007) |
[ 89 ] | Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D., Bunyard, P., & Li, B.-L. (2014). Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content. Journal of Hydrometeorology, 15(1), 411-426. https://doi.org/(https://doi.org/10.1175/JHM-D-12-0190.1) |
[ 90 ] | Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W., & Chen, B. (2018). Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. Journal of Soils and Sediments, 19, 171-185. https://doi.org/(https://doi.org/10.1007/s11368-018-2195-9) |
[ 91 ] | Marinova, D., & Bogueva, D. (2022). Food and Environmental Emergency. In Food in a Planetary Emergency (pp. 37-55). Springer. |
[ 92 ] | Marshall, N. A., Friedel, M., van Klinken, R. D., & Grice, A. C. (2011). Considering the social dimension of invasive species: the case of buffel grass. Environmental science & policy, 14(3), 327-338. https://doi.org/(https://doi.org/10.1016/j.envsci.2010.10.005) |
[ 93 ] | Massy, C. (2020). Call of the reed warbler: A new agriculture–a new earth. Univ. of Queensland Press. https://www.regenwa.com/wp-content/uploads/2020/04/Call-of-the-Reed-Warbler.-A-new-Agriculture-a-New-Earth.pdf |
[ 94 ] | Massy, C. J. (2013). Transforming the earth: A study in the change of agricultural mindscapes. https://openresearch-repository.anu.edu.au/bitstream/1885/115203/2/b35577204-Massy_Charles.pdf |
[ 95 ] | McCaman, J. L. (1994). Weeds and why they grow. |
[ 96 ] | McCloskey, G., Wasson, R., Boggs, G., & Douglas, M. (2016). Timing and causes of gully erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: Management implications. Geomorphology, 266, 96-104. https://doi.org/(https://doi.org/10.1016/j.geomorph.2016.05.009) |
[ 97 ] | Meteorology, A. G. B. o. (2001). Map of Climate Zones of Australia http://www.bom.gov.au/climate/how/newproducts/images/zones.shtml |
[ 98 ] | Millar, J. (1995). Pasture doctor: a guide to diagnosing problems in pastures. Inkata Press. |
[ 99 ] | Mitchell, T. L. (1839). Three expeditions into the interior of Eastern Australia: with descriptions of the recently explored region of Australia Felix, and of the present colony of New South Wales. Libraries Board of South Australia. (https://adc.library.usyd.edu.au/data-2/mitthre.pdf) |
[ 100 ] | Mollison, B. (1979). Permaculture two: Practical design and further theory in permanent agriculture. Stanley, Australia: Tagari Books. |
[ 101 ] | Mollison, B. (1988). Permaculture: a designer's manual. Permaculture: a designer's manual. |
[ 102 ] | Mollison, B. C., & Holmgren, D. (1978). Permaculture 1: a perennial agricultural system for human settlements. Transworld Publishers. |
[ 103 ] | Morris, G. D. (2004). Sustaining national water supplies by understanding the dynamic capacity that humus has to increase soil water-storage capacity. The University of Sydney. http://www.biodynamics2024.com.au/wp-content/uploads/2009/04/PlainOldDirt.pdf |
[ 104 ] | Myhre, G., Samset, B. H., Hodnebrog, Ø., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Forster, P., Kasoar, M., & Kharin, V. (2018). Sensible heat has significantly affected the global hydrological cycle over the historical period. Nature Communications, 9(1), 1-9. https://doi.org/https://doi.org/10.1038/s41467-018-04307-4 |
[ 105 ] | Nara, K., Nakaya, H., Wu, B., Zhou, Z., & Hogetsu, T. (2003). Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytologist, 159(3), 743-756. https://doi.org/ https://doi.org/10.1046/j.1469-8137.2003.00844.x |
[ 106 ] | Neal, A. L., Bacq-Labreuil, A., Zhang, X., Clark, I. M., Coleman, K., Mooney, S. J., Ritz, K., & Crawford, J. W. (2020). Soil as an extended composite phenotype of the microbial metagenome. Scientific reports, 10(1), 1-16. https://doi.org/https://doi.org/10.1038/s41598-020-67631-0 |
[ 107 ] | Nicholls, N. (2010). Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958–2007. Climate dynamics, 34(6), 835-845. https://doi.org/https://doi.org/10.1007/s00382-009-0527-6 |
[ 108 ] | Niles, S. A. (1982). Style and function in Inca agricultural works near Cuzco. Ñawpa Pacha, 20(1), 163-182. https://doi.org/https://doi.org/10.1179/naw.1982.20.1.009 |
[ 109 ] | Norman, L., Brinkerhoff, F., Gwilliam, E., Guertin, D., Callegary, J., Goodrich, D., Nagler, P., & Gray, F. (2016). Hydrologic response of streams restored with check dams in the Chiricahua Mountains, Arizona. River Research and Applications, 32(4), 519-527. https://doi.org/https://doi.org/10.1002/rra.2895 |
[ 110 ] | Norman, L. M. (2022). Commentary: Dryland Watershed Restoration With Rock Detention Structures: A Nature-Based Solution to Mitigate Drought, Erosion, Flooding, and Atmospheric Carbon. Frontiers in Environmental Science, 242. https://doi.org/https://doi.org/10.3389/fenvs.2021.679189 |
[ 111 ] | Norris, D., & Andrews, P. (2010). Re-coupling the carbon and water cycles by Natural Sequence Farming. International journal of Water, 5(4), 386-395. https://doi.org/(https://doi.org/10.1504/IJW.2010.03873) |
[ 112 ] | NSW, S. C. S. (2023). The History of the Soil Conservation Service (https://www.scs.nsw.gov.au/about-the-soil-conservation-service/the-history-of-the-soil-conservation-service |
[ 113 ] | Numata, M., & Holzner, W. (1982). Biology and ecology of weeds. W. Junk. |
[ 114 ] | Nyagumbo, I., Nyamadzawo, G., & Madembo, C. (2019). Effects of three in-field water harvesting technologies on soil water content and maize yields in a semi-arid region of Zimbabwe. Agricultural water management, 216, 206-213. https://doi.org/https://doi.org/10.1016/j.agwat.2019.02.023 |
[ 115 ] | Pearson, C. J. (2007). Regenerative, semiclosed systems: a priority for twenty-first-century agriculture. Bioscience, 57(5), 409-418. https://doi.org/https://doi.org/10.1641/B570506 |
[ 116 ] | Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7-13. https://doi.org/https://doi.org/10.1016/j.coesh.2017.12.003 |
[ 117 ] | Pfeiffer, E. E. (1975). Weeds and What they Tell us. Rodale Press. |
[ 118 ] | Qualman, D. (2017). Agribusiness takes all: 90 years of Canadian net farm income. Darrin Qualman. (https://www.darrinqualman.com/canadian-net-farm-income/). |
[ 119 ] | Quinkenstein, A., Woellecke, J., Böhm, C., Grünewald, H., Freese, D., Schneider, B. U., & Hüttl, R. F. (2009). Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environmental science & policy, 12(8), 1112-1121. https://doi.org/https://doi.org/10.1016/j.envsci.2009.08.008 |
[ 120 ] | QUT. (2022). Unlocking the true value of organic soil amendments. https://research.qut.edu.au/cab/projects/unlocking-the-true-value-of-organic-soil-amendments/ |
[ 121 ] | Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K., & Chauhan, B. S. (2017). Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Frontiers in plant science, 8, 95. https://doi.org/https://doi.org/10.3389/fpls.2017.00095 |
[ 122 ] | Revitt, D. M., Ellis, J. B., & Lundy, L. (2017). Assessing the impact of swales on receiving water quality. Urban water journal, 14(8), 839-845. https://doi.org/https://doi.org/10.1080/1573062X.2017.1279187 |
[ 123 ] | Reynard, E., & Estoppey, E. (2021). The Lavaux World Heritage terraced vineyard. In Landscapes and Landforms of Switzerland (pp. 111-121). Springer. https://doi.org/(https://doi.org/10.1007/978-3-030-43203-4_8) |
[ 124 ] | SA, R. S. (2011). Farm dams: a guide to siting, design, construction and management on eyre peninsula. (https://www.scribd.com/document/378811797/Farm-Dams-Fact) |
[ 125 ] | Sakurai, K., Kawazu, H., Kono, Y., Yanagisawa, M., Le, V. T., Le, Q. T., Dangthisong, N., & Chau, T. N. (2004). Impact of agricultural practices on slope land soil properties of the mountainous region of northern Vietnam: a case study in bac Ha District, Lao Cai Province. Japanese Journal of Southeast Asian Studies, 41(4), 503-518. https://doi.org/(https://doi.org/10.20495/tak.41.4_503) |
[ 126 ] | Sanford, A. W. (2011). Ethics, Narrative, and Agriculture: Transforming Agricultural Practice through Ecological Imagination. Journal of agricultural and environmental ethics, 24(3), 283-303. https://doi.org/10.1007/s10806-010-9246-6 |
[ 127 ] | Scavo, A., & Mauromicale, G. (2020). Integrated weed management in herbaceous field crops. Agronomy, 10(4), 466. https://doi.org/https://doi.org/10.3390/agronomy10040466 |
[ 128 ] | Schneider, T., O'Gorman, P. A., & Levine, X. J. (2010). Water vapor and the dynamics of climate changes. Reviews of Geophysics, 48(3). https://doi.org/https://doi.org/10.1029/2009RG000302 |
[ 129 ] | Scott, J., Webber, B., Murphy, H., Ota, N., Kriticos, D., & Loechel, B. (2014). AdaptNRM Weeds and climate change: supporting weed management adaptation. In: CSIRO, Canberra, www. AdaptNRM. org. |
[ 130 ] | Seidel, R., Moyer, J., Nichols, K., & Bhosekar, V. (2017). Studies on long-term performance of organic and conventional cropping systems in Pennsylvania. Organic Agriculture, 7(1), 53-61. (https://link.springer.com/article/10.1007/s13165-015-0145-z) |
[ 131 ] | Selim, M. (2019). A review of advantages, disadvantages and challenges of crop rotations. Egyptian Journal of Agronomy, 41(1), 1-10. https://doi.org/(https://doi.org/10.21608/agro.2019.6606.1139). |
[ 132 ] | Sheil, D., & Murdiyarso, D. (2009). How forests attract rain: an examination of a new hypothesis. Bioscience, 59(4), 341-347. https://doi.org/https://doi.org/10.1525/bio.2009.59.4.12 |
[ 133 ] | Shilton, P., Norman, P., Stone, B., & Carey, B. (2015). Soil conservation guidelines for Queensland. Department of Science, Information Technology and Innovation. https://www.publications.qld.gov.au/dataset/soil-conservation-guidelines/resource/8850848a-11c0-43b9-9463-855cd1cc943b |
[ 134 ] | Sime, G. (2018). A Discourse Analysis of Postmodern Agricultural Research and Extension Models: An Epistemological Perspectivism. Journal of Experimental Agriculture International,, 27(3), 1-11. https://doi.org/https://doi.org/10.9734/JEAI/2018/26180 |
[ 135 ] | Singh, D., Sale, P., & Routley, R. (2005). Increasing phosphorus supply in subsurface soil in northern Australia: Rationale for deep placement and the effects with various crops. Plant and Soil, 269(1), 35-44. https://doi.org/(https://doi.org/10.1007/s11104-004-2475-6) |
[ 136 ] | Skinner, R. H., & Dell, C. J. (2016). Yield and soil carbon sequestration in grazed pastures sown with two or five forage species. Crop Science, 56(4), 2035-2044. https://doi.org/https://doi.org/10.2135/cropsci2015.11.0711 |
[ 137 ] | Smith, C., & Dawborn, K. (2011). Permaculture pioneers: Stories from the new frontier. In: Daylesford, Vic: Holmgren Design Service. |
[ 138 ] | Sokol, N. W., & Bradford, M. A. (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12(1), 46-53. https://doi.org/https://doi.org/10.1038/s41561-018-0258-6 |
[ 139 ] | Steffen, W., Vertessy, R., Dean, A., Hughes, L., Bambrick, H., Gergis, J., & Rice, M. (2018). Deluge and drought: Australia's water security in a changing climate. (https://apo.org.au/node/202981) |
[ 140 ] | Sturt, C. (1834). Two expeditions into the interior of Southern Australia: during the years 1828, 1829, 1830 and 1831 with observations on... New South Wales (Vol. 2). Smith. |
[ 141 ] | Sušnik, J., Masia, S., Kravčík, M., Pokorný, J., & Hesslerová, P. (2022). Costs and benefits of landscape‐based water retention measures as nature‐based solutions to mitigating climate impacts in eastern Germany, Czech Republic, and Slovakia. Land Degradation & Development, 33(16), 3074-3087. https://doi.org/https://doi.org/10.1002/ldr.4373 |
[ 142 ] | Tardio, G., Mickovski, S. B., Rauch, H. P., Fernandes, J. P., & Acharya, M. S. (2018). The use of bamboo for erosion control and slope stabilization: Soil bioengineering works. Bamboo: Current and Future Prospects, 105. https://doi.org/(http://dx.doi.org/10.5772/intechopen.75626) |
[ 143 ] | Tautges, N. E., Chiartas, J. L., Gaudin, A. C., O'Geen, A. T., Herrera, I., & Scow, K. M. (2019). Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biology, 25(11), 3753-3766. https://doi.org/ https://doi.org/10.1111/gcb.14762 |
[ 144 ] | Teague, R., & Barnes, M. (2017). Grazing management that regenerates ecosystem function and grazingland livelihoods. African Journal of Range & Forage Science, 34(2), 77-86. https://doi.org/https://doi.org/10.2989/10220119.2017.1334706 |
[ 145 ] | Teague, W. R., Apfelbaum, S., Lal, R., Kreuter, U. P., Rowntree, J., Davies, C., Conser, R., Rasmussen, M., Hatfield, J., & Wang, T. (2016). The role of ruminants in reducing agriculture's carbon footprint in North America. Journal of Soil and Water Conservation, 71(2), 156-164. https://practicalfarmers.org/wp-content/uploads/2018/10/Teague-et-al-2016-JSWC-Role-of-ruminants-in-reducing-agricultures-C-footprint-in-North-America.pdf |
[ 146 ] | Thompson, S. C. G., & Barton, M. A. (1994). Ecocentric and anthropocentric attitudes toward the environment. Journal of environmental Psychology, 14(2), 149-157. https://doi.org/https://doi.org/10.1016/S0272-4944(05)80168-9 |
[ 147 ] | Trognitz, F., Hackl, E., Widhalm, S., & Sessitsch, A. (2016). The role of plant–microbiome interactions in weed establishment and control. FEMS Microbiology Ecology, 92(10). https://doi.org/https://doi.org/10.1093/femsec/fiw138 |
[ 148 ] | Van Vlack, C. H., & Clapp, L. E. (1940). Contour farming for soil and water conservation. Bull. Iowa agric. Exp. Stn., 323-335. (https://www.bestfilebook.com/pdf/contour-farming-for-soil-and-water-conservation/) |
[ 149 ] | Varotto, M., Ferrarese, F., & Pappalardo, S. E. (2019). Italian Terraced Landscapes: The Shapes and the Trends. In World Terraced Landscapes: History, Environment, Quality of Life (pp. 27-43). Springer. |
[ 150 ] | Vogt, J., Safriel, U., Von Maltitz, G., Sokona, Y., Zougmore, R., Bastin, G., & Hill, J. (2011). Monitoring and assessment of land degradation and desertification: towards new conceptual and integrated approaches. Land Degradation & Development, 22(2), 150-165. https://doi.org/(https://doi.org/10.1002/ldr.1075) |
[ 151 ] | Walters, C. (1991). Weeds: control without poisons. Acres USA. |
[ 152 ] | Ward, M. S., Simmonds, J. S., Reside, A. E., Watson, J. E., Rhodes, J. R., Possingham, H. P., Trezise, J., Fletcher, R., File, L., & Taylor, M. (2019). Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conservation Science and Practice, 1(11), e117. https://doi.org/(https://doi.org/10.1111/csp2.117) |
[ 153 ] | Weersink, A., & Pannell, D. (2017). Payments versus direct controls for environmental externalities in agriculture. In Oxford Research Encyclopedia of Environmental Science. https://doi.org/https://doi.org/10.1093/acrefore/9780199389414.013.520 |
[ 154 ] | Weisser, W. W., Roscher, C., Meyer, S. T., Ebeling, A., Luo, G., Allan, E., Beßler, H., Barnard, R. L., Buchmann, N., & Buscot, F. (2017). Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and applied ecology, 23, 1-73. https://doi.org/https://doi.org/10.1016/j.baae.2017.06.002 |
[ 155 ] | Wichelns, D. (2015). Achieving water and food security in 2050: outlook, policies, and investments. Agriculture, 5(2), 188-220. https://doi.org/https://doi.org/10.3390/agriculture5020188 |
[ 156 ] | Williams, J. (2010). The principles of Natural Sequence Farming. International journal of Water, 5(4), 396-400. https://doi.org/(https://doi.org/10.1504/IJW.2010.038731) |
[ 157 ] | Williams, M. (2015). Earth, air, fire and water: distinguishing human impacts from natural desertification in South Australia. Transactions of the Royal Society of South Australia, 139(1), 9-18. https://doi.org/(http://dx.doi.org/10.1080/03721426.2015.1035214) |
[ 158 ] | Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., . . . Brock, C. A. (2019). A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 574(7778), 399-403. https://doi.org/10.1038/s41586-019-1638-9 |
[ 159 ] | Wilson, M. (2006). Willows: weeds of retention. (https://www.nsfarming.com/Media/P10.%20Micheal%20Wilson%20NSFpaperv2-Willows%20final%20doc.pdf) |
[ 160 ] | Wolka, K., Mulder, J., & Biazin, B. (2018). Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agricultural water management, 207, 67-79. https://doi.org/(https://doi.org/10.1016/j.agwat.2018.05.016) |
[ 161 ] | Yeomans, A. (2005). Priority One-Together We Can Beat Global Warming by Allan J. 2005. Internet Source-http://www. yeomansplow. com. au/priority-one-contents. htm. |
[ 162 ] | Yeomans, A. Y. (1971). The City Forest: The Keyline Plan for the Human Environment. Keyline Pub. Pty. https://repositorio.ufsc.br/bitstream/handle/123456789/206490/1971%20Percival%20Alfred%20Yeomans%20-%20The%20City%20Forest.pdf?sequence=1 |
[ 163 ] | Yeomans, K. B., & Yeomans, P. A. (1993). Water for every farm. Keyline Designs. |
[ 164 ] | Yeomans, P. A. (1958). The challenge of landscape: the development and practice of Keyline. Keyline Pub. Pty. https://repositorio.ufsc.br/bitstream/handle/123456789/206486/1958%20Percival%20Alfred%20Yeomans%20the-challenge-of-landscape.pdf?sequence=1 |